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Introduction 

Owing to initial injection errors, an actual interplanetary trajectory may 

deviate from the desired nominal, and a correction or a sequence of corrections 

must be performed in order to attain the desired terminal position. A s  time 

goes on, tracking information improves the knowledge of the vehicle's where- 

abouts resulting in a best estimate of the trajectory, but, of course, the obser- 

vations employed have errors in them. When a correction sequence is performed, 

the terminal miss is not fully nulled owing to actuation errors,  i.e., imperfect 

control performance, as well as to the inaccurate knowledge of the vehicle's true 

position. Such a correction sequence cannot be described in the framework of 

the usual differential equations of motion because of the random character of the 

control errors  and observation errors.  This %oisevl cannot be evaluated for any 

particular instant of time since it is represented in terms of random variables, 

but it will ordinarily have known statistical properties. So one may introduce the 

covariance matrices of normally distributed variables to provide a second order 

statistical measure, and in these terms the effects of the noise may be studied. 

The elements of the covariance matrices of the deviations and estimation errors  

then may be regarded as the new state variables of the midcourse guidance prob- 

lem. The first portion of this report is concerned with deriving the differential 

equations satisfied by these matrices. The approach to this development is that 

employed in the papers by Derrham and Speyer (Ref. 1) and Striebel and Breakwell 

(Ref. 2). Processing of observational data will be taken to be according to the 

linear filtering theory of Kalman and Bucy (Ref. 3). 

The midcourse guidance optimization problem may be phrased in terms 

of minimizing a statistical measure of the propellant consumption for an accept- 

able terminal dispersion by choice of the coefficients of a linear feedback guidance 

law. In the treatment to be presented, the coefficients of the law will be taken 

from an appropriate single impulse correction policy except for a multiplicative 
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factor representing the magnitude of correction which will assume the role of a 

scalar control.variable of the optimization problem. In the remaining portion 

of the report, we present an optimization method tailored to the particular form 

of the midcourse guidance problem. The general idea of the method is the de- 

termination of a control history by an iterative process which minimizes a 

Hamiltonian function along the trajectory. Basically, it is a first order method, 

and is a variant of a technique previously studied in Ref. 4. 

The Variational Equations 

The equations of motion are  given by a system of simultaneous nonlinear 

ordinary differential equations written in first order form as 

x = f ( x , u )  

where the x-vector components a re  the state variables and the u-vector 

components are some control functions. 

Eq. (1) is satisfied by the reference or 6esired trajectory, and, in 

the context of the midcourse guidance problem, this will ordinarily consist 

of free-fall motion from injection to a specified terminal point. The prob- 

lem of determining a suitable reference trajectory may be regarded as 

separate from the midcourse correction problem and will not be discussed 

here. 

The variational equations for this system are  

6; = F 6 x  + G 6 u  + v 
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bf 
8 G = - 9 and v is a column vector representing the mech- where F =- ax 

anization errors (i.e., noise or actuation errors); v is taken as uncorrelated 

Gaussian noise with zero mean, which may be stated e cv( t )I = 0, 

e[v(T) v'(t)l = Q(t )  6 ( t  - 7 )  where 6(t - T )  is the Dirac delta function. 

af 
a u  

6x x - x  
True Desired 

We define 

6X 
6X'X-x 

the true o r  total deviation from the desired. 

the estimate of the deviation from the desired 
or nominal. 

A A 

A Ax = x - x the error  in the estimate of the deviation. True 

The covariance matrices X, Y, and P are defined: 

The differential equations for the estimate gf the deviations from 

the nominal trajectory are of the assumed form 

6; = F 8; + G 6 u  + K(6Z - 6 i )  

where Z(x, c) is a column vector of measurement data 
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A 

Note that 8 Z  would equal 6 Z (to first order) if there were no estimation 

e r ror  and no measurement error.  

6 is a column vector of the measurement errors  statistically de- 

scribed by 

&C€(t)l = 0 

e [ 6 ( 7 )  ~ ' ( t ) ]  = R ( t )  6 ( t  - 7) 

The optimal (minimumvariance) gain matrix, K, derived by Kalman and 

Bucy is 

K = PM'R-' 

It should be noted that this is optimal only in the case in which the covariance 

of the actuation e r rors  is independent of the controls and the state, which is 

not the case in the midcourse situation. However, K above will be assumed 

to be close enough to the actual optimum to furnish a suitable approximation. 

Everything is now specified, at least statistically, except 6u. We 

now assume that the control deviation will be a linear feedback on the estimate 

deviation quantities, i . e. , 

noting that 6x cannot be used because it is never known. 
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The matrix A is the matrix of feedback control gains. We now write 

6;  = F 6 x  - G A &  + v 

6x = F6G - Gh6; + KMAx + K C  e. 

and since Ax = 6x - 6 : ,  we have 

A X  = F A X  - KMAx - Kc + v 

(4) 

(5) 

The appearance of the randomvariables v and c now force us to statistical 

analysis. 

To give us  a useful statistical measure, we now introduce the co- 

variance matrices, 

P ( t )  = e [Ax( t )  Ax ' ( t ) l  

Y(t)  = e[62( t )  6 i ' ( t ) l  (8) 

B(t )  = e[62( t )  Ax'( t ) I  = O if EC6G(to) Ax ' ( t ) ]  0 

(7 1 

= 0 (9) 

This last equation states that, if  the initial estimate and the e r ror  in the 

estimate are uncorrelated, B will then be zero for all time. This can be 

shown by developing the B equation and observing that every term in B 

has B as a factor: 

B = F B  + BF' - B M ~ R - ~ M P  - G A B  
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The Development of the P Equation 

P ( t )  = e[Ax(t)  Ax'(t)J 

=  FAX - KMAx - K C  + v )  Ax'] 

+ eEAx (AX'F' - Ax'M'K' - c'K' + v')] 

= ( F  - K M )   AX AX'] + €![AX AX'] (F'- M'K') 

+ ~ [ ( - K c + v )  AX'] +  AX ( -c 'K '+v ' ) I  

In order to evaluate the last term in Eq. (ll), e [Ax (- c'K' + v' )I ,  we 

must first integrate 

A i  = ( F - K M ) A x  - K F  + v 

The solution is 

t 
Ax(t)  = @ ( t , t ) A x ( t )  + 4 @(t,T)[-K(T) C ( T )  + v(7 ) IdT  

0 0 
0 

provided that @ has the properties 

. 
@(t,t,) = CF(t) - K(t)  M(t)I  @(t,t 0 ) 

with initial value 

4Ct,,t,) = I 

To show that this solution is valid, one may differentiate it. 
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A$t) = i ( t , t ) A x ( t , )  0 + QI(t, t)[-K(t)  c ( t ) + v ( t ) l  + 

t 

t 
6(t,7) [ -K(T) ~ ( 7 )  + v(T)] d 7  

0 

And making u ~ e  of the relations from (12), (13) and (14) respectively 

@(t , t )  = I 

we find we have the same equation for Ai with which we started. So in 

order to evaluate P( t ) we have 

L L 

8 [Ax (- c'K' + VI)] = e[{ @( t, 7) [-K( T )  c( 7 )  + v( T ) ]  d T }  
t 
0 

t 
= ~ ( t y T ) [ K ( 7 ) R ( 7 ) K ' ( t ) + Q ( T ) 1 6 ( T  - t ) d T  (16) 

t 
0 

because 

Now the integral of the Dirac delta function from - O3 to + Q, is 1, but we 

are integrating from $ to t, where t is precisely the midpoint of this 
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1 6( T - t ) d T = z t 

t 
particular function so the value of the integral 

and since @(t, t )  = I  0 

e[Ax(-c'K' + v')] = ,[K(t)R(t)K'(t) 1 

e[(-Kc + v )  Ax'] = i [K( t )R( t )K ' ( t )  1 

+ Q(t ) l  

Similarly, we find that 

+ Q ( t ) l  

By substituting equations (7), (17), and (18) into Eq. (ll), the expression 

for P becomes 

P = F P  - K M P  + PF' - PM'K' + KRK'  + Q 

and by making u8e of the value of K = P M ' R - l ,  Eq. (19) reduces to 

P = FP + PF' - P M ' R - ~ M P  + Q 

The Development of the Y Equation 

Y = e[6; 6 2 1  

We will use the differential equation 

* 
6x = ( F  - G A ) b S  + KMAx + K C  

and its solution which is 

t 

t 

A 

6x = *(t,$) 6;($) + 1 * ( ~ , T ) [ K ( T ) M ( T ) A X ( T ) + K ( T ) C ( T ) ~ ~ T  (23) 
0 
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Differentiating Y, we have 

Using Eq. (23) for 6 i ,  we find that 

t 
0 

1 
2 

= - K( t ) R( t ) K'( t ) 

Similarly 

1 
&[K(t)  c ( t )  6 % ' ( t ) l  = , K ( t ) R l t ) K ' ( t )  

Finally, remembering that Ax and 6; are uncorrelated, we have for 

Eq. (26) 

Y = ( F  - G h ) Y  + Y(F' - A'G') + K R K '  

9 



Performance Criterion, 4( t,) 

It is desired to minimize, in ~ o m e  sense, the propellant expended. 

We choose to minimize the integral of the square root of the variance of the 

propellant expenditure. 

where c is the effective exhaust velocity. Since 

A 

6~ = - A ~ x  

we have 

Hence, 

# is not the average fuel rate because e[/-] # ,/% 4- . 
It may be shown, however, that 6( tf ) is an upper bound for the average 

fuel expenditure. 

Development of the I' Matrices 

In our midcourse guidance problem, the expanded form of 

x = f(x,u) 

10 



is written 

and 

. a f  af  6x = -8x + - 6 u  = F 6 x  + G 6 u  ax 3U 

or more specifically we use 

= [ - ”,; J [6x]  6x + [ - m 4 Cau3 
i3X 

6x 

where each matrix written here is a 3x 3 mat rh  and the vectors have three 

components. From this, one can see that the 6u vector consists of the 

three Cartesian coordinates of the thrust vector. 

We consider the idealized case in which a correction is performed in 

terms of an instantaneous change in the velocity corresponding to a large 

(impulsive) acceleration. The expression for the change in velocity comes 

from integrating the acceleration over an interval which becomes vanishingly 

short in the limit. 

R = - - - -  .. 3! IT\  T’ - 
m IT1 

where 

IT\ = - c m  

so 

(37) 

(39) 

d T = - - ( c l o g m )  - 
dt IT1 
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Integrating this gives the change in velocity due to the impulsive thrust. 

The gravitational terms are omitted in Eq. (38) since they become zero 

in the limit. Hence 

Thus for an impulsive correction, the thrust components and the 

velocity increment components are parallet and the magnitude of the velocity 

change is 

Now we have 

In our midcourse problem we consider the simplified case in which 

A = kl' 

So we have the equalities 

where the matrix I' is derived from a single impulse correction policy. 

A single impulse correction policy may be chosen to null three position 

miss components at tf, an arrival time which will be assumed to be fixed. 

The scalar factor k becomes the control variable of our variational prob- 

ITI from Eq. (45) and the other part  is 
Av lem, part  of which is the factor 

some number dependent on how much of the terminal miss distance we wish 

(44) 
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to eliminate during a correction. The determination of the k history is 

the subject of the optimization study. 

For the purpose of determining the matrix, we assume that the 

change in velocity at t will completely null the estimated terminal l lmissl l  
0 

k+ - R- = AR(to) = - r ijx(to) 

where the l l m i s s l l  is a linear function of the six deviation components at 

time to. That is, the llcurrentfl estimated state deviations at to can be 

propagated ahead to t to estimate the terminal miss distance and velocity. 

The first three components of 62( t ) a re  those to be nulled. 
f 

f 

Making use of the state transition matrix @(tf to) we have 

When we partition the transition matrix into four 3x 3 matrices 

we can write the desired teriiiinal iniss distance, namely zero, in terms of 

the existing deviations plus the correction to the velocity components as 

where 6x( to) and 6;( to) are three component vectors. 
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Solving for AR( to) from Eq. (49) gives us 

So for a control policy which permits correction in all three coordinates of 

the velocity vector. 

r = CB-'A i I 3 
(3x 6) (3x3) (3x3) 

If, however, the system were restricted and could function with only 

one degree of freedom, for instance, if only one component of the velocity 

could be changed, the form of I' would be somewhat different. This would 

correspond to the case of a rocket firing along some specified axis (e. g., 

spin axis) in inertial space. 

The Cartesian coordinates of the additional velocity would be 

cos CL cos 60 

A R d  = [ s inao  COS 6 j  A .  = NAv 

AR, 0 

1 sin 60 

where cy and 8 would be the right ascension and declination respectively 

of the fixed axis along which the thrust is applied. 
0 0 

Again we write the desired terminal miss in terms of the existing 

deviations plus the corrections to the velocity components as 

14 



= b 1  bx(t ) + [BI[si(t  ) + NAvl In1 0 0 

from which we get 

Since we have, in effect, three equations with only one unknown, we 

apply the method of lead squares to obtain the best value of Av from all 

three equations. This corresponds to minimizing the miss magnitude. Pre- 

multiply both sides of Eq. (54) by the transpose of the coefficient of Av 

so 

but we want 

Hence 

So for on0 degree of freedom in control 

r = N(N'B'BN)-'N'B'[A i B] 

(53) 

(56) 

(57) 

(59) 
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Finally, there is also the possibility of having only two degrees of 

freedom in a correction policy. An example might be a rotating disc type 

of vehicle with its spin axis oriented in inertial space and the direction of 

thrust or velocity change lying in the plane of the rotating disc. This would 

require a pulsing type of a rocket firing radially over a small fraction of a 

revolution of the disc. The two degrees of freedom in the correction policy 

would then be the magnitude of the velocity vector Av and the angle /3 

measured from some fixed inertial axis in the disc to the velocity vector. 

I€ we had Av and ,5 given we could get the Cartesian coordinates of the 

incremental velocity by 

where A (e) represents a rotation about the third axis through an angle 8 
3 

A1(B) = 0 [: 

- sin 8 0 

cos e 0 

0 1 

0 0 

cos e - sin e 
sin e cos e 

The angles cyo and 6o are the right ascension and declination of 

the inertial spin axis of the disc. 

Evaluating Eq. (60) gives 

16 



so 

which we define 

- cos a! 0 

O I  1 

0 
- sinao 

cos a! - ahao 
0 

0 0 

-cos a sin 6 

- sin a0 sin 8, 

0 0 
- sina0 

cos a. 

0 cos bo , 

(3 x 2) 

0 0 Av cos p 

sin 60 

cos 6 
0 

Av cos 

Av sin 

Substitute Eq. (65) into Eq. (49). This time we have three equations with 

two unknowns, namely Av cos p and Av sin p .  

Applying the method of least squares to our overdetermined system gives 

the same form as Eq. (56) 

But, again, we want Ak(to) 
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so 

Finally for two degrees of freedom in control 

Eqs. (51), (59) and (09) respectively we call I' I' , and r corresponding 
3' 1 2 

to three, one, and two degrees of freedom respectively. 

The Form of Q 

The actuation error ,  v, which appears in Eqs. (2), (4), sand (6 )  

could be thought of as some percent error  in control which is converted 

to a 6x variable. Thus, one possible definition would be 

v = qG6u 

where q is that percent of the control which is taken to be the e r ror  and 

G 6u is control converted to a 6x variable. Making use of the equation 

for 6u, namely &u = - A6;, we have 

So the form of Q for such an e r ror  would be 

18 



The Adjoint System 

The differential equations governing the covariance matrices and the 

propellant estimate become the state equations for the midcourse optimization 

problem: 

h = FP + PF' - PZP + Q 

Y = F Y  + YF' - YA'G'  - G A Y  + PZP 

where 

z = M ' R - ~ M  

Q = 77 G A Y A ' G '  

and 
2 

The Hamiltonian of the system is 

H = i + t r ( ~  P + L  Y )  
P Y 

where L and L are Lagrange multiplier matrices. Note that the 

Hamiltonian is a scalar and has the usual properties irrespective of the 

matrix format of the problem. 

P Y 

Returning to the P, Y and 6 equations, we note that 

P = P ( P , Y , A , A ' )  

* = Y ( P ,  Y, A, A') 

6 = i q ~ ,  A,  A') 

where 9 and the elements of P and Y are the state variables and the 

elements of A and A' take on the role of control variables. 
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Linearization of the system leads to the following form for the 

variational equations : 

6P = ( F - P Z ) 6 P  + 6 P ( F ' - Z P )  

+ $[G A 8Y A'G' + G 6 A Y  XG' + G A Y  6A! G'1 

b y  = ( F - G A ) b Y  + 6 Y ( F ' - A ! G ' )  - Y 6 A G '  - G 8 A Y  

+ P Z b P  + 8 P z P  

t r ( A 6 Y d  + 6AY15,' + A Y 6 X )  66 = 
j 2 n  tr A Y X  

We will now evaluate the time derivative of 

tr (L bP + L 6Y) + &D 
P Y 

and show that the resulting expression is exactly the variation in H, 6H 

due to variations only in the control BA and 6A!, as long as we define 

L 

coefficients of 6P and by, the state variations, to zero, as in Green's 

formula. 

and L as solutions of an adjoint system obtained by equating the 
P Y 

The time derivative of (75) is 

tr [L 6 P + L  6P3 + tr [L 6Y+ L 8 Y l  + 6& 
P P Y Y 

(74) 

Substituting for bP, 6t and 66 from Eq. (74) and collecting coefficients 

of 6P, 6Y, 6A and BH making use of the cyclic rule for trace operations, 

we obtain 

20 



tr [i + L  (F - PZ) + (F' - ZP)L + L PZ + Z P L  I ~ P  
P P  P Y  Y 

+ t& + L  ( F - G A ) + ( F ' - I \ ' G * ) L  
Y Y  Y 

+ z A ! G ' L  G h l 6 Y  h'h + 
Jzn tr A Y ~  P 

+ tr [L *G6AY1\ 'Gt+L z G h Y 6 d G ' l  

+ tr [L (-Y 6AG' - G 6 h Y ) l  + 

P P 

tr [ M Y  A! + A Y  6A1 
(77) 

Y ,/an t rhyfi  

Setting the coefficients of 6P and 6Y to zero, we obtain the following 

differential equations which define the adjoint system: 

L = - L ( F - P Z )  - ( F ' - Z P ) L  - L P Z  - Z P L  
P P P Y Y 

A A  i, = - L (F - G A )  - (F' - A!G')L - 
Y Y J- 

2 - d G ' L  G h  
P 

It is to  be noted that the remaining terms of (77) is the variation in H, 6H 

due to variations in the controls 6A and 6d, as can be verified by the 

reader by taking the variation of the sxpression for H given by Eq. (73). 

Thus 
tf s 6H dt = [tr (L 6P + L  6Y) + a@], 
t 0 P Y 
0 

tf 

An appropriate generalization of this expression to the case of strong control 

variations is given by 

tf tf s (H*-H)dt = CtrL 6 P + L  6Y+ Wit 
t 
0 

0 P Y 

(79) 
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as developed in Ref. 5. It then follows that the controls minimizing H are 

necessary (although not sufficient) for a minimum. 

Actuation Errors  Independent of Correction Magnitude 

If the system employed for implementation of the guidance law con- 

tains errors  whose covariances are independent of the magnitude of the 

correction, as well as  those described by Eq. (70) with proportional co- 

variances, the matrix Q will then take the form 

Q = Q, + Qz 

The second member, Q,, will be of the form 

- 
in which Q is a constant matrix and the scalar function u( k ) is the unit 

step function which takes on the value unity during a correction and the 

value zero otherwise. 

Because Q, does not possess a proper differential, the equations of 
- 

variation are not applicable in the case of such errors.  Since Q u( k) is 

independent of the state, however, the definition of the adjoint system (78) 

does not require alteration. The appropriate Hamiltonian function for the 

optimal guidance problem is that given by (73), it being understood that the 

te rm Qz is included in P. It should be noted that the function H depends 

upon the control variable k nonlinearly only because of the actuation error  

terms Q1 and Q2. 



The Hamiltonian 

The Hamiltonian function which is to be minimized at each t in the 

interval t 5 t tf, by the optimal control is 
0 

H = t r ( L  P t L  +) + J" t r A Y K  
P Y n 

We consider the simplified case 

A = k I '  

in which the matrix of feedback parameters A is obtained as  the matrix r 
corresponding to an appropriate single impulse correction policy, except for 

a scalar factor k, assumed nonnegative, which becomes the control variable 

of our variational problem. By substituting the values for P and $ from 

Eq. (70) and (71) and A = k r ,  into Eq. (81), the Hamiltonian can be ex- 

pressed as 

u ( k ) = l  when k > O  

u(k) = 0 when k = 0 
2 H = a k  + bk  + cu(k )  + d 

where 

a = J s  t r r Y r '  - tr [L G r Y + L  Yr 'G '1  
n Y Y 

b = tr [:L G I ' Y r ' G ' ]  
P 

c = tr CL GI 

d = tr [L (FP + PF' - PZP) + L ( F Y  + Y F '  + PZP)]  

P 

P Y 

(83) 

and b may be anticipated as positive for minimum fuel problems. 
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In order that our payoff function be minimized, the maximum principle 

states that the optimal control k ( t )  minimize the Hamiltonian for all t, 
t t tf, or that 
0 

H[k*(t)I - H[k(t)I 2 0 k,k* 2 0 

A Proposed Optimization Technique 

In the following we present an optimization scheme tailored to the 

features peculiar to the midcourse guidance problem. The sequence of com- 

putations would proceed as follows. The first reference solution of the state 

system P, Y ,  and dp would be integrated forward with k( t ) = 0, thus 

generating the covariance matrices for the case of no guidance corrections. 

The adjoint system would then be integrated backwards from the terminal 

point to the initial with terminal conditions on the variables L and L 

depending on a provisional choice of a parameter A ,  to be discussed 

later. During this backward integration, the function H( k*) would be 

examined at each integration point. 

P Y 

From Eq. (83), the form of H versus k* is that of a parabola 

superposed on a function hzving a fizite discontinuity at k* = 0 arising 

from the appearance of the step function 

and 
u(k)  = 1 when k > 0 

u ( k )  = 0 when k = 0 
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Fig. 1 

/ H 

d 

c 

0 k 
P 

k 
P 

We wish to find that value of H(k ) corresponding to  the minimum of the 

parabola, which may or  may not be less than the value of d = H(O), see 

Fig. 1. 

P 

Now 

and 

o r  

- aH = a + 2 b k  = 0 
ak P 

a 
P 2 b  
k = - -  

a k  

P 2 
H = - , E i c + d  

for H(kP) = HP 

since u(k) = 1 

k # o  

If k > 0, the value is a candidate and we now wish to compare the value of 
P 

H(k ) attained at the minimum of the parabola, with H(0) = d, so as to 
P 

decide the global minimum of H.  If k .e 0, k = 0 will be the value placed 
P 

in the table since negative k is inadmissible by assumption. Then the 

iteration process is, at each integration step, 

25 



(1) Verify that b > 0, since - d”H - - 2b. 
dk2 

(2) Test if k < 0. I€ BO, k = 0 replaces value in the table. 
P 

(3) If k > 0, compute &I = H  - d. If AH 2 0, k = 0 gives 

min H at t, and k = 0 replaces value in the table. If 

AH < 0, k gives min H at t, and k will replace the 

value in the table. A new solution of the state system is then 

calculated and the new (and presumably improved) value of 

the payoff function computed at the terminal point. 

P P 

P P 

The coefficients a, b, c and d of H ( k )  will, of course, change 

due to new tables of k( t ), generated by the above procedure. For each 

new table of k( t ) steps 1-3 are repeated until convergence. 

Boundary and Transversdity Conditions 

Initial conditions for a typical problem of midcourse guidance along a 

free fal l  space trajectory are 

P(t,) = Po 

Y(to) = 0 

where P 

analysis of the injection guidance system. 

is the covariance matrix of injection e r rors  determined by a priori 
0 

If all three components of position miss at a fixed final time are to be 

corrected, a measure of the magnitude of miss variance such as 
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. b 

may be specified. If the function of terminal values 

is adopted as  the function to be minimized, the constant multiplier X > 0 

has the interpretation - 
W t f  1 5. 

a 5( tf) - 

The appropriate transversality condition for the terminal values of 

the adjoint elements is 

tr (L 6P + L 6Y) = A5.65.(tf) 
P Y 

which yields 

5 .t =. t  = . t  = X  
pll p22 p33 

.t = I /  = t  = X5 
y11 y22 y33 

and all other t and .t zero. 
pi j 'ij 

Selection of the Multiplier X 

Suppose we are  interested in that value of X such that only one non- 

zero control appears in the table, and k = 0 for all other times. This is 

equivalent to finding the value of A ,  A ,  which makes AH equal to zero 

at each time. This collection of x's then represent the threshold values 

for nonzero controls at each time. The minimum value of 1 in this col- 

lection is then the overall threshold A ,  

- 

h, we are seeking. 
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2 In H = ak + bk + c u( k )  + d and from Eq. (84), which defines a, b, 
c and d and.from the transversality conditions of Eqs. (93) and (94), we 

notice that H is linear in A, that is, H is of the form 

H = k ( k )  + h(k)X 

where @ and h are functions of k. For each time, for k = 0 

and for k = k  
P 

H(X) = Ho(X) = d = NX 

H(X)  = H ( A )  = @ + MA 
P 

Fig. 2 

I 
I 
I 

(95.) 

(97) 

- 
X 0 

I x 
0 
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From Fig. 2, M and N are the Slope8 for H and H respectively. For P 0 

H ( A  ) and H ( Xo) can be computed. any p 0 0 

At X = 0, 

H = Q(kp) 
P 

H = O  
0 

The slopes are 

H ( A  1 0 0  N =  . 

W e  wish to find x for which 

Substituting Eqs. (96) and (97) into condition (100) yields, 

and 
i - 

A = -  
N - M  

and finally 

@ 
- 
x =  

6, - m(xJ 

(98) 

(99) 
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is the 1 at each time from which 

emallest. This value of & will be employed for a generation of our 

first optimal control history. A family of optimal control histories, re- 

quiring a greater number of control commands will then be generated by 

selecting larger values for A .  

will be chosen by selection of the 
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